Sains Malaysiana 53(12)(2024):
3319-3328
http://doi.org/10.17576/jsm-2024-5312-15
Characterization
of Graphene Oxide Functionalized Carbon Foam as a Potential Material for
Different Applications
(Pencirian Span Melamin Berfungsian Grafin
Oksida sebagai Elektrod Berpotensi bagi Aplikasi Superkapasitor Boleh Mampat)
BALARABE
EL-YAQUB1,2, MOHD HANIFF WAHID1,*, ZULKARNAIN ZAINAL1,4,
ABDUL HALIM ABDULLAH1 & WAN AZLINA WAN AB KARIM GHANI3
1Department of Chemistry, Faculty of
Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
2Department of Chemistry, Faculty of Science, Nigerian Defence
Academy, Kaduna State, Nigeria
3Department of Chemical and Environmental Engineering, Faculty of
Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
4Nanomaterials Synthesis and Characterizations Laboratory, Institute
of Nanoscience and Nanotechnology, Universiti Putra Malaysia, 43400 UPM
Serdang, Selangor, Malaysia
Received: 4 May
2024/Accepted: 18 October 2024
Abstract
Due to
its cheap production, high electrical conductivity, simplicity of doping, and
enhanced hydrophilic characteristic, porous carbon foam has a lot of potential
for energy storage and conversion applications. In this study, graphene oxide
(GO) was successfully grafted onto carbon foam using a simple dip coating
technique with the help of a linker. 3D porous carbon foams were created using
a one-step carbonization from commercial melamine foam. The material was
characterized using XRD, FTIR, BET, TGA, XPS, Raman and FESEM to confirm its
structural, functional group, surface area, thermal stability, and
morphological characteristics. The stress-strain tests of the samples were
conducted on an electronic universal testing machine. These foams have
sufficient surface area (99 m2/g), a high level of C content
(79.15%), and excellent compressibility. Moreover, as a proposed material for
different applications, this distinctive GO grafted porous carbon foam also has
the tendency to deliver remarkable performance in different fields of study. In
conclusion, the GO grafted porous carbon foams have excellent prospects for
different applications due to the straightforward preparation process and
fascinating properties.
Keywords: Energy
storage; graphene oxide; melamine foam; porous carbon foam
Abstrak
Foam
karbon berliang memiliki potensi besar dalam aplikasi penyimpanan dan penukaran
tenaga disebabkan oleh kemudahan untuk fabrikasi, kekonduksian elektrik yang
tinggi dan sifat hidrofilik yang unggul. Dalam kajian ini, grafin oksida telah
berjaya dicantumkan pada foam karbon menggunakan teknik celupan mudah. Foam
karbon berliang telah dihasilkan menggunakan satu langkah pengkarbonan dan
proses aktivasi ke atas foam melamin komersial. Bahan telah
dicirikan menggunakan XRD, FTIR, BET, XPS, Raman dan FESEM bagi mengesahkan
struktur, kumpulan berfungsi, luas permukaan dan ciri morfologi. Ujian mampat
dan regang ke atas sampel telah dijalankan dengan menggunakan ujian mesin
universal elektronik. Foam ini memiliki luas permukaan yang tinggi (99 m2/g),
kandungan karbon yang tinggi (79.15%) dan kebolehmampatan cemerlang. Tambahan
pula, sebagai elektrod cadangan bagi semua superkapasitor keadaan pepejal, foam
karbon berliang istimewa ini memiliki kecenderungan untuk memberi kapasitan
khusus yang mengagumkan. Secara kesimpulannya, foam karbon berliang memiliki
prospek cemerlang sebagai elektrod berprestatsi tinggi bagi penyimpanan tenaga
elektrokimia oleh kerana proses penyediaan yang mudah dan prestatsi
elektrokimia yang menakjubkan.
Kata kunci: Foam
karbon; foam melamin; grafin oksida; penyimpanan tenaga; superkapasitor
REFERENCES
Asasian-Kolur, N., Sharifian, S., Haddadi,
B., Jordan, C. & Harasek, M. 2024. Ordered porous carbon preparation by
hard templating approach for hydrogen adsorption application. Biomass
Conversion and Biorefinery 14(16): 18381-18416.
Cao, W., Ling, S., Chen, H., He, H., Li, X.
& Zhang, C. 2022. 3D-printed ultralight, superelastic reduced graphene
oxide/manganese dioxide foam for high-performance compressible supercapacitors. Industrial & Engineering Chemistry Research 61(30): 10922-10930.
Chen, X., Yu, H., Gao, Y., Wang, L. &
Wang, G. 2022. The marriage of two-dimensional materials and phase change
materials for energy storage, conversion and applications. EnergyChem 4(2): 100071.
Das, H.T., Dutta, S., Balaji, T.E., Das,
N., Das, P., Dheer, N., Kanojia, R., Ahuja, P. & Ujjain, S.K. 2022. Recent
trends in carbon nanotube electrodes for flexible supercapacitors: A review of
smart energy storage device assembly and performance. Chemosensors 10(6): 223.
Delbari, S.A., Ghadimi, L.S., Hadi, R.,
Farhoudian, S., Nedaei, M., Babapoor, A., Namini, A.S., Van Le, Q.,
Shokouhimehr, M. & Asl, M.S. 2021. Transition metal oxide-based electrode
materials for flexible supercapacitors: A review. Journal of Alloys and
Compounds 857: 158281.
Fang, D., He, F., Xie, J. & Xue, L.
2020. Calibration of binding energy positions with C1s for XPS results. Journal
of Wuhan University of Technology-Mater. Sci. Ed. 35(4): 711-718.
Jain, A., Ziai, Y., Bochenek, K.,
Manippady, S.R., Pierini, F. & Michalska, M. 2023. Utilization of
compressible hydrogels as electrolyte materials for supercapacitor
applications. RSC Advances 13( 17): 11503-11512.
Jiang, L. & Lu, X. 2021. Functional
hydrogel-based supercapacitors for wearable bioelectronic devices. Materials
Chemistry Frontiers 5(20): 7479-7498.
Jing, X., Wang, L., Qu, K., Li, R., Kang,
W., Li, H. & Xiong, S. 2021. KOH chemical-activated porous carbon sponges
for monolithic supercapacitor electrodes. ACS Applied Energy Materials 4(7): 6768-6776. https://doi.org/10.1021/acsaem.1c00868
Kumar, R., Youssry, S.M., Soe, H.M.,
Abdel-Galeil, M.M., Kawamura, G. & Matsuda, A. 2020. Honeycomb-like
open-edged reduced-graphene-oxide-enclosed transition metal oxides (NiO/Co3O4)
as improved electrode materials for high-performance supercapacitor. Journal
of Energy Storage 30: 101539. https://doi.org/10.1016/j.est.2020.101539
Liu, H., Jiang, L., Wang, Y., Wang, X.,
Khan, J., Zhu, Y., Xiao, J., Li, L. & Han, L. 2023. Boosting oxygen
reduction with coexistence of single-atomic Fe and Cu sites decorated
nitrogen-doped porous carbon. Chemical Engineering Journal 452: 138938.
Luo, Y., Wen, M., Zhou, J., Wu, Q., Wei, G.
& Fu, Y. 2023. Highly‐exposed Co‐CoO Derived from nanosized
ZIF‐67 on N‐doped porous carbon foam as efficient electrocatalyst
for zinc‐air battery. Small 19(43): 2302925.
Ma, L., Wei, Z., Zhao, C., Meng, X., Zhang,
H., Song, M., Wang, Y., Li, B., Huang, X. & Xu, C. 2023. Hierarchical
superhydrophilic/superaerophobic 3D porous trimetallic (Fe, Co, Ni)
spinel/carbon/nickel foam for boosting oxygen evolution reaction. Applied
Catalysis B: Environmental 332: 122717.
Marcano, D.C., Kosynkin, D.V., Berlin,
J.M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L.B., Lu, W. & Tour,
J.M. 2010. سنتز اکسید گرافن
بهبود یافته است. ACS Nano 4(8): 4806-4814. https://pubs.acs.org/doi/abs/10.1021/nn1006368
Muhammad, R., Park, J., Kim, H., So, S.H.,
Nah, Y-C. & Oh, H. 2023. Facile synthesis of ultrahigh-surface-area and
hierarchically porous carbon for efficient capture and separation of CO2 and enhanced CH4 and H2 storage applications. Chemical
Engineering Journal 473: 145344.
Muzaffar, N., Afzal, A.M., Hegazy, H.H.
& Iqbal, M.W. 2023. Recent advances in two-dimensional metal-organic
frameworks as an exotic candidate for the evaluation of redox-active sites in
energy storage devices. Journal of Energy Storage 64: 107142.
Ponraj, J.S., Narayanan, M.V., Dharman, R.K.,
Santiyagu, V., Gopal, R. & Gaspar, J. 2021. Recent advances and need of
green synthesis in two-dimensional materials for energy conversion and storage
applications. Current Nanoscience 17(4): 554-571.
Priya, D.S., Kennedy, L.J. & Anand,
G.T. 2023. Emerging trends in biomass-derived porous carbon materials for
energy storage application: A critical review. Materials Today
Sustainability 2023: 100320.
Rong, H., Song, H., Gao, T., Li, Y., Zhao,
R. & Zhang, X. 2023. Ultralight melamine foam derived metal nanoparticles
encapsulated CNTs/porous carbon composite for electromagnetic absorption. Synthetic
Metals 294: 117306.
Shayesteh, H., Khosrowshahi, M.S.,
Mashhadimoslem, H., Maleki, F., Rabbani, Y. & Emrooz, H.B.M. 2023. Durable
superhydrophobic/superoleophilic melamine foam based on biomass-derived porous
carbon and multi-walled carbon nanotube for oil/water separation. Scientific
Reports 13(1): 4515.
Shen, T., Zhao, Z., Zhong, Q., Qin, Y.,
Zhang, P. & Guo, Z.X. 2019. Preparation of graphene/Au aerogel film through
the hydrothermal process and application for H2O2 detection. RSC Advances 9(23): 13042-13047.
https://doi.org/10.1039/c9ra00516a
Vorokhta, M., Kusdhany, M.I.M., Vöröš, D.,
Nishihara, M., Sasaki, K. & Lyth, S.M. 2023. Microporous carbon foams: The effect
of nitrogen-doping on CO2 capture and separation via pressure swing
adsorption. Chemical Engineering Journal 471: 144524.
Wang, L. & Hu, X. 2018. Recent advances
in porous carbon materials for electrochemical energy storage. Chemistry–An
Asian Journal 13(12): 1518-1529.
Wang, M., Yang, Y. & Gao, W. 2021.
Laser-engraved graphene for flexible and wearable electronics. Trends in
Chemistry 3(11): 969-981.
Xu, M., Ma, Y., Liu, R., Liu, Y., Bai, Y.,
Wang, X., Huang, Y. & Yuan, G. 2020. Melamine sponge modified by
graphene/polypyrrole as highly compressible supercapacitor electrodes. Synthetic
Metals 267(June): 1-9. https://doi.org/10.1016/j.synthmet.2020.116461
Yan, C., Luo, Y., Zhang, W., Zhu, Z., Li,
P., Li, N., Chen, Y. & Jin, T. 2022. Preparation of a novel melamine foam
structure and properties. Journal of Applied Polymer Science 139(16):
51992.
Zhu, X., Zhou, G., He, G., Ma, L., Xu, B.
& Sun, F. 2023. Directly loading graphene oxide into melamine sponge for
fast and high-efficiency adsorption of methylene blue. Surfaces and
Interfaces 36: 102575. https://doi.org/10.1016/j.surfin.2022.102575
*Corresponding author; email:
mw_haniff@upm.edu.my